Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?
نویسندگان
چکیده
The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide's influence on cellular ATP concentrations. Carnosine's ability to reduce the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge of carnosine's mode of action on human cells.
منابع مشابه
Ghrelin and lipid metabolism: key partners in energy balance.
Ghrelin, the endogenous ligand of the GH secretagogue receptor, has a pleiotropic role in the modulation of energy balance. Recent evidence has demonstrated that besides its orexigenic role, ghrelin regulates central and peripheral lipid metabolism through specific control of hypothalamic AMP-activated protein kinase (AMPK), a critical metabolic gauge regulating both cellular and whole-body ene...
متن کاملCarnosine: physiological properties and therapeutic potential.
Carnosine and related dipeptides are naturally-occurring histidine-containing compounds. They are found in several tissues, particularly in skeletal muscle. Since carnosine was discovered in Russia in 1900, there have been many theories about its biological functions, but none has been proved beyond reasonable doubt [1, 2]. However, this compound is reported to possess antioxidant, buffering, i...
متن کاملPhysiology and pathophysiology of carnosine.
Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aim...
متن کاملOn the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson’s Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-pho...
متن کاملWhite to beige conversion in PDE3B KO adipose tissue through activation of AMPK signaling and mitochondrial function
Understanding mechanisms by which a population of beige adipocytes is increased in white adipose tissue (WAT) reflects a potential strategy in the fight against obesity and diabetes. Cyclic adenosine monophosphate (cAMP) is very important in the development of the beige phenotype and activation of its thermogenic program. To study effects of cyclic nucleotides on energy homeostatic mechanisms, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013